

On October 27th, 2022, Consumer Reports hosted an online convening to discuss ways to
encourage widespread adoption of code written in memory-safe languages. The event was
hosted by Amira Dhalla and Yael Grauer from Consumer Reports and facilitated by Georgia
Bullen from Superbloom. Attendees included approximately 25 individuals across civil society,
education, government, industry, and the technical community, including Josh Aas from Internet
Security Research Group and Prossimo; Jack Cable, Alex Gaynor, Joseph Lorenzo Hall from
the Internet Society; Jacob Hoffman-Andrews from Electronic Frontier Foundation and Internet
Security Research Group; Per Larsen from Immunant, Inc.; Bob Lord from CISA; Art Manion,
Eric Mill, and Conrad Stosz from Office of Management and Budget; Harry Mourtos from Office
of the National Cyber Director; Shravan Narayan from the University of Texas at Austin; Maggie
Oates from Consumer Reports; Miguel Ojeda, Matthew Riley from Google; Christine Runnegar
from the Internet Society; Deian Stefan from the University of California, San Diego: Ben L.
Titzer from Carnegie Mellon University; and Zachary Weinberg from CMU.

The event gave participants the opportunity to share resources related to memory safety,
discuss opportunities and barriers in the security ecosystem, and to brainstorm potential
solutions to memory access vulnerabilities that exist in products across the marketplace.

1

Background (Why Consumer Reports)

This event stemmed from internal conversations about limitations of a Consumer Reports
project, Security Planner, a free, interactive guide to staying safer online. Security Planner
provides step-by-step, consumer-focused digital consumer tips that are easy to understand and
implement, even for users without a technical background. In some instances, Security Planner
provides recommendations of available consumer products that have been evaluated for privacy
and security.

However, there are industry-wide threats that cannot be solved through user behavior or even
consumer choice, and memory unsafety is one such issue. So we decided to reach out to
experts to learn more about what they are doing to help reduce the vast number of security
vulnerabilities related to memory access.

We also wanted to determine how Consumer Reports could complement ongoing efforts to
improve the ecosystem for all end users. Consumer Reports is an independent, nonprofit
member organization that works with consumers to create more fairness, safety, and
transparency in the marketplace.

Why Memory Safety

Roughly 60 to 70 percent of browser and kernel vulnerabilities—and security bugs found in
C/C++ code bases—are due to memory unsafety, many of which can be solved by using
memory-safe languages. While developers using memory-unsafe languages can attempt to
avoid all the pitfalls of these languages, this is a losing battle, as experience has shown that
individual expertise is no match for a systemic problem. Even when organizations put significant
effort and resources into detecting, fixing, and mitigating this class of bugs, memory unsafety
continues to represent the majority of high-severity security vulnerabilities and stability issues. It
is important to work not only on improving detection of memory bugs but to ramp up efforts to
prevent them in the first place.

Challenges

Education

Before we even look at industry-wide issues with memory safety it’s important to address the
pipeline.

Currently, some computer science courses expect students to do much of their systems-level
work in C, which is notoriously memory-unsafe. Professors have a golden opportunity here to
explain the dangers of C and similar languages, and possibly increase the weight of memory
safety mistakes on exercise grading, which proliferate in student-written code just as they do
outside of the classroom. Another opportunity is to switch languages for part of those courses.
However, teaching parts of some courses in, for example, Rust could add inessential
complexity, and may be impractical in some cases. There’s a hard upper limit on how many new

2

http://securityplanner.org
https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/
https://www.youtube.com/watch?v=drfXNB6p6nI
https://www.youtube.com/watch?v=drfXNB6p6nI

ideas and the number of programming languages you can throw at someone in a class before
their brain shuts off, and many computer science classes are already at capacity.

There’s also a perception that memory-safe languages, namely Rust, are harder to learn and
will be difficult to use with hardware, which may dissuade people from learning it in the first
place. (However, most other memory-safe languages, like Python, Go, and JavaScript, achieve
temporal memory safety through garbage collection, which substantially simplifies many aspects
of programming, making the languages famously easier to learn.)

Professors also want to do their best to make sure their students graduate with the skills that will
help them find the type of job they want, which becomes a chicken and egg problem—students
often learn to program in C assuming it is the universal language that will allow them to be
easily employable in the future, which results in companies wanting to hire students who can
code in memory-safe languages such as Rust to have a smaller hiring pool.

To change this pattern, the industry itself must shift. We also need more data on which
companies are hiring people who know memory-safe languages, and which require C/C++
(which will also change with time). It might also be useful to get information on companies
providing training in memory-safe languages to their engineers or writing specific projects in
them. Some of this information can be gleaned through an SBOM (software bill of materials),
which could be useful in ascertaining which of the constituent parts of a final good are
memory-safe, which old, unsupported libraries are being used, and so forth. However, hardware
vendors self-assessing and making a legal attestation of the parts in a final good may have
more information.

Distrust or Dislike of Memory-Safe Languages

The lowest-hanging fruit for memory safety is brand new code, but to be successful, we must
recognize that some programmers may find memory-safe languages more difficult or be
resistant to shifting to them. This can be mitigated by explaining that memory-safe languages
force programmers to think through important concepts that ultimately improve the safety and
performance of their code.

In some cases, the concerns exist at executive levels of an organization. Management may
distrust new languages, as well as have concerns that tools may not work properly. Perhaps the
tools are workable but there is the sense that C/C++ equivalents are more reliable or easier to
use. People realizing they need new toolchains on platforms they support—and need to be able
to debug them—leads to significant ecosystem drag. It requires significant activation energy to
bootstrap an ecosystem into something government, organizations, and individuals can buy into
without having to build expertise in the tool chain.

In some cases, memory safety isn’t yet possible. For example, IoT/embedded devices continue
to be built using C/C++ for platform compatibility.

And some resistance to moving off C/C++ is due to the sunk cost fallacy. Through joint
partnerships, it may be helpful to explain that changing languages now, rather than avoiding

3

doing so, will yield less cost than it would in the future. Additionally, using Rust for new projects
will ultimately result in higher productivity.

Approaches

There is general agreement among participants on an incremental approach targeting
components of larger software packages rather than aiming for complete rewrites of large and
complex software packages. However, opinions differ heavily about whether and when it makes
sense to isolate components (i.e. sandbox them), compile them to something like
WebAssembly, or rewrite them in a memory-safe language like Rust. These options present a
number of trade-offs, including implementation effort, execution performance, and safety. For
example, code that is otherwise security critical in a logic sense (like JITs, cryptographic
primitives, etc.) may be comparatively worse for rewriting.

Sandboxing doesn't prevent memory safety bugs from causing problems within a sandbox. In
particular, process-based sandboxing (unlike solutions like WebAssembly and Rust) hasn't
historically prevented attackers from exploiting memory safety bugs to run arbitrary code within
the sandbox. And, this gives them more freedom to exploit bugs in the sandbox itself or the
trusted code interfacing with the sandbox code.

Compiling to something like WebAssembly addresses the limitations of process-based
sandboxing, but currently comes at a runtime performance cost and can add significant
toolchain complexity.

Rewriting in a memory-safe language like Rust has a high up-front cost for implementation, and
may temporarily increase the number of logic bugs as a result of the rewrite (the bug count will
go down over time, like it did for the original software), but the result is likely to be both fast and
safe.

Which approach makes sense depends heavily on the desired outcome as well as available
resources. Stakeholders may not agree on what makes sense in any given situation. In many
cases, it is even desirable to use multiple techniques—Rust can be used to eliminate memory
safety bugs, and running components in isolation with least privilege (for example, by compiling
them to WebAssembly) can be used to deal with supply chain attacks.

Another area of agreement is that companies, government organizations, and other entities can
at least identify and prioritize the most critical libraries and packages to shift to memory-safe
languages. This would include those that handle sensitive data and support vulnerable
users—medical data, government data, and tools used by journalists and human rights activists.
It should also start with the softest and most directly-exposed attack surface.

But making informed decisions would require additional data. CVE, the database of Common
Vulnerabilities and Exposures, which classifies vulnerabilities, uses a Common Vulnerability
Scoring System (CVSS), but the root causes of bugs are often vague, meaning that we lack
meaningful visibility into the scale of the problem for many types of vendors. For example,

4

https://noncombatant.org/2021/04/09/prioritizing-memory-safety-migrations/

Apple’s security bulletins currently don't provide enough details to distinguish C/C++-induced
memory vulnerabilities from logic bugs.

And the metrics we have on the percentage of vulnerabilities that are due to memory unsafety
are for only some cross-sections of the industry, such as Mozilla, Android, and Microsoft, which
makes our understanding of the current state incomplete. It would be great to get broad,
updated statistics on the percentage of vulnerabilities due to memory unsafety.

Improving Incentives

The biggest memory-safety challenge appears to be both technical and commercial. How do we
deal with very large legacy codebases written in unsafe programming languages?

Those working in industry pointed out that the social and commercial incentives to encourage
fully addressing a problem of this scale do not exist. To get to a place where everything is
memory-safe, organizations need some regulatory or market incentive.

There are many barriers to adoption, even as CISA, FTC, etc. and the NSA push companies
toward addressing memory-safe code.

Getting over the perceived barriers to adoption and the time and monetary costs requires
effective advocacy. Engineers at companies need support for this type of work because they
often don’t have sufficient internal resources, and the options for hiring external contractors to
deal with the security bugs is limited.

It’s not yet possible for government procurement to only buy memory-safe software. For
example, you can’t say routers must be memory-safe top to bottom because no such products
currently exist. But it may be possible for the government to say that newly developed custom
components have to be memory-safe to slowly shift the industry forward. This would require
some type of central coordination and trust in that system. The government could ask for a
memory safety road map as part of procurement. The map would explain how the companies
plan to eliminate memory-unsafe code in their products over time.

The carrot approach for memory safety may include not just decreased future costs in
cybersecurity, but also reliability and efficiency. Ideally, memory safety will be viewed as a proxy
for funded, competent risk management strategy and for software that's currently evolving and
malleable. Competitions and awards may also be some areas where we can help create the
conditions for a “space race” for memory safety. This would include reasons to upgrade to
memory-safe libraries that are not just security-driven: replacements that are faster, better, have
additional features, etc.

5

https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF

Public Accountability

Targeting the general public is a tactic that’s worked well for other industries facing large
problems in the past. In 1965, the book Unsafe At Any Speed: The Designed-In Dangers of the
American Automobile by Ralph Nader was instrumental in making it widely known to the public
that car manufacturers were resisting the introduction of safety features. It also showed that
while manufacturers had patented safety interventions already, they told Congress it would take
ages.

Similarly, a 1906 novel called The Jungle by Upton Sinclair portrayed harsh conditions and
exploitations of immigrants in Chicago and similar industrialized U.S. cities. The book exposed
unsanitary practices and health violations in the meatpacking industry, which led to public outcry
and reforms such as the Federal Meat Inspection Act. Consumer Reports also has a long
history of working with consumers to secure victories that have made the marketplace safer,
healthier, and fairer. We have advocated for seat belt mandates, played a key role in
encouraging Congress to pass the Safe Drinking Water Act, spurred fast food chains to serve
chicken and beef raised without medically important antibiotics, and helped prod the U.S. Food
and Drug Administration to issue guidance limiting the amount of arsenic in infant rice cereals.

How can we learn from this, and from medical, aviation, and automotive safety to make
improvements? The goal is to speed along the transformation of the software industry so that
we no longer tolerate and normalize companies placing the burden of staying cyber-safe on the
enterprises and individuals who are least capable of doing so. Instead, products should be safe
by design, and we should be increasingly intolerant of manufacturers who decide to choose
unsafe practices for making products.

In some cases, even developers unaware of the large percentage of security bugs stemming
from memory-unsafe code would be able to minimize them, if the industry norm becomes a
state where, for example, memory safety is incorporated by default.

The PR incentive would work best if memory safety became easier to implement. What if an
existing group took on tooling that would make this all easier? Options that may help move the
needle might be funding projects to sponsor new OSes or support existing Linux distros, or to
team up with companies and other organizations to have a cash prize for the top 20 libraries
that can securely use memory-safe alternatives.

For example, Let’s Encrypt had the goal of reducing the friction of deploying HTTPS by
automating deployment and offering certificates free of charge, so they built the systems to do
that. It was free and automated, and once HTTPS was ubiquitous enough, it became mandatory
for crucial web platform features like Service Worker.

6

Incremental Changes

One popular potential solution: advocacy and education for the general public that would rank
companies by memory safety bugs and their severity that’s accessible for a non-technical
audience. But such a ranking would be impossible to do without rating companies on partial
success.

Because potential solutions depend on the size of the system at issue and the
sophistication/funding of the owning organization, it would be important to keep this in mind in
rankings (while also caring for the safety of the end user).

Giving organizations incentives to work incrementally is an important way to encourage
incremental improvements. However, any kind of ranking system could increase the risk that
companies would aim to game the rankings by meeting specific criteria without actually
improving safety for end users.

One possible solution is to include transparency in ranking criteria, by prescribing a set of
information that should be in an annual report. Looking at both partial progress and
transparency in an assessment might lead to greater change than an all-or-nothing approach.

Because large changes take time, several participants floated the idea of asking application
developers or organizations to list the memory safety mitigations used by a piece of software as
part of its feature set. That said, projects written entirely in memory-safe languages should not
be penalized for not using exploit mitigations intended for C/C++, and developers should not be
incentivized to apply exploit mitigations that are redundant, are inefficient, or don’t work. A
“nutrition label” approach could theoretically indicate what percentage of code is covered by, for
example, safe languages, audits, fuzzing, sandboxing, low privilege, and so forth. This type of
research could also lead to a “State of Memory Safety” report compiling information in various
annual reports to see what we’ve learned industry-wide year over year. However, it’s important
to not get caught up in engineering details that are heavily context-dependent and not
comparable across projects. Any nutrition-label approach should lead to good engineering
results and emphasize real-world outcomes.

Large organizations like Apple or Microsoft could be pressured to put a plan in place and make
it public, but we’d need to consider software dependencies as well as the amount of time it
could take. With the proliferation of unsafe libraries to depend on, as well as compatibility
concerns, it may be difficult to quickly evolve libraries and other parts of the ecosystem that
grew organically over a long time. (That said, using memory-safe languages that are compatible
with older C/C++ libraries is still a step forward.)

For high-risk targets, companies may get higher rankings for creating a “safe mode” limited to
features that we know are memory-safe. Some companies already have some type of safe
mode that, for example, hides unsafe attack surface from some attackers. Could companies
create safe modes that incorporate memory safety to be used for security-sensitive cases, such
as journalists, human rights activists, and so forth? The eventual ideal, though, is not to need a
safe mode, because the normal mode would be safe.

7

Awareness and Advocacy

Often engineers put a lot of attention and urgency on memory safety, but it is not taken seriously
as a top cybersecurity issue by business executives. Others in the organizations may be
memory-safety enthusiasts getting pushback from product managers/designers. There are even
language experts who might not quite grasp the full complexity of the issue. So far browser and
operating systems have been most responsible for this type of work, and expanding outside of
that may be important to create an industry-wide change that leads to safe adoption across all
platforms and products.

As an industry, we need to draw more attention to memory safety.

We could learn from the lessons of MANRS (Mutually Agreed Norms for Routing Security), a
global initiative that helps reduce the most common threat to the security of global Internet
routing infrastructure. Routing security is a similar collective action problem to memory safety,
and the MANRS "actions"—a set of practices that improve routing security—serve as a
voluntary set of norms that stakeholders in internet routing can abide by to secure their smaller
piece of the bigger picture, adding to the aggregate state of routing security. This could involve
two tactics: ensuring that memory safety is a clear basis for competition between similar
offerings (for example, who has pledged to adopt memory-safe systems and software?) or
worked-through case studies (or horror stories) that show the serious risks and costs of memory
unsafety. Relating back to the MANRS initiative in routing security, a useful case study was the
early 2022 incident where Twitter was able to recover quickly in the face of Russian network
hijacking, having learned a lesson from a few years before when Myanmar did the same thing
and gravely impacted Twitter operations worldwide. Can we show that companies both gain in
the market and avoid costly risks by making their products more memory-safe?

There could be multiple campaigns to raise awareness, one targeting the public and one
targeting enterprise management.

To have the greatest impact, it’s important to break out of the technical community as an issue,
similar to encrypting the web or the importance of MFA, where awareness has moved beyond
technical circles.

Consumer advocacy organizations and journalists can help educate consumers. Both groups
can use their position in industry to push baseline expectations to encompass perceived risk
due to technology choices. Journalists could make the quality of the software embedded in
consumer products—including but not limited to memory safety—part of their reviews.
(Unfortunately, analyzing exposed attack surface requires significant expertise and is extremely
time-consuming, making this task more difficult.)

Consumer Reports uses the Digital Standard, which already has two areas that overlap with
memory safety: checking to see whether products are built with effectively implemented safety
features, and checking to see that the software does not make use of unsafe functions or

8

https://www.manrs.org/2022/03/lesson-learned-twitter-shored-up-its-routing-security/

libraries. These standards allow the use of memory-unsafe languages with mitigations, but the
mitigations do not prevent all vulnerabilities.

An advocacy approach might include encouraging or training tech journalists to call out memory
safety bugs in more clear terms in phone reviews, though putting particular security bugs in the
right context may require engineering expertise that most journalists don’t have—and even the
experts argue about the details.

Awareness-raising might also include op-eds in tech, government, or policy-focused
publications, as well as storytelling narratives around efforts in other initiatives.

9

Recommendations

Industry

● As much as possible, companies, government organizations, and other entities should
commit to using memory-safe languages for new products and tools and newly
developed custom components. They should also support the development of open
source memory-safe code.

● They should also identify and prioritize the most critical libraries and packages to shift to
memory-safe languages, starting with the softest and most directly exposed attack
surface, and to sandbox components that can be easily isolated. Special care should be
taken for those that handle sensitive data and support vulnerable users—medical data,
government data, and tools used by journalists, human rights activists, and other
targeted or vulnerable groups. While it’s important for everyone, everywhere to have
memory-safe browsers and operating systems, special care should be taken to ensure
that special-use tools intended for narrow and at-risk populations are memory-safe.

● Companies should be transparent about the causes of bugs, providing detailed
information on security vulnerabilities to help researchers and industry experts ascertain
which percentage of vulnerabilities are due to memory safety. This is particularly true for
large breaches.

● Companies should voluntarily provide memory safety roadmaps to explain how they plan
to eliminate memory-unsafe code in their products over time. Specifically, we have
identified Microsoft and Apple as companies we hope will get on board due to their
impact (and limited public statements).

● Companies should provide data on what percentage of jobs or projects use memory-safe
languages, and which memory-safe languages are being taught to engineers internally.

Government & Advocacy

● There need to be regulatory or monetary incentives to transition legacy code to
memory-safe languages, as well as policies to promote memory-safe code.
Organizations with resources may consider providing funding to help create a “space
race” for memory safety. Advocacy organizations and existing technical groups can also
work on making memory safety easier by taking on tooling to make this easier,
committing direct resources to ecosystem infrastructure and development, funding
projects to sponsor new operating systems for existing Linux distros, or teaming up with
companies and other organizations to have a cash prize for the top 20 libraries that can
use memory-safe alternatives. There also needs to be an IOT sector-specific effort
around memory safety. In some cases, this effort could eventually even extend to
developers that are unaware of security bugs stemming from memory unsafe code, if the
industry norm becomes a state where memory safety is incorporated by default.

● Advocates must work on raising awareness on memory safety outside of the tech
community through a public pressure campaign on companies that place the burden of
staying safe on enterprises and individuals who are least capable of doing so, and is
less tolerant of manufacturers who choose unsafe build practices and defaults.

10

https://noncombatant.org/2021/04/09/prioritizing-memory-safety-migrations/
https://noncombatant.org/2021/04/09/prioritizing-memory-safety-migrations/

● Awareness-raising should target multiple groups, including enterprise management,
journalists, and the public. Tactics could include op-eds in tech, government or
policy-focused publications, and storytelling narratives around these efforts. Regardless
of the audience, this awareness-raising should focus on all of the benefits of memory
safety, not just in decreased future cybersecurity costs but also efficiency, speed, and so
forth.

● Consumer advocacy organizations and journalists should push baseline expectations to
encompass perceived risk due to technology choices. Advocacy organizations should
train tech journalists on the dangers of memory unsafety so that this information is
incorporated into phone and product reviews. Because memory safety is a long game,
journalists or advocacy organizations might consider some kind of rating or ranking that
would reward incremental improvements and transparency.

● Government, advocacy groups, and technical organizations can join forces to create
industry development standards for safe code.

● Since many of the software projects that need to transition to memory-safe programming
are open-source, advocates should explore possibilities for collaboration with
organizations working to improve the sustainability of open source software
development.

Case Studies

1. The Python cryptographic authority is one of the most widely used cryptography libraries
in the Python ecosystem. Many of the tools are largely built on OpenSSL. The popular
cryptography library is written in C. About two years ago, the maintainers started the
process of migrating some of their dependence on OpenSSL away from that to their own
Rust code, particularly starting with areas around certificate parsing and parsing of other
structures. These are some of the most classical places to find memory safety
vulnerabilities in C libraries, and they wanted to mitigate the risk that they were having by
relying on OpenSSL.

Another benefit was getting huge performance improvements, because the greater
safety guarantees they were getting from the language allowed them to be more
aggressive in doing things like not copying memory. Specifically, the safety guarantees
of Rust mean that one can easily represent structures like X.509 certificates as an array
of bytes, and then a parsed structure containing pointers into the original array. This is in
contrast to OpenSSL's representation, where the parsed structure contains separate
allocations for any references into the original bytes. Using Rust led to a 10x
performance improvement over C, showing that using memory-safe languages can lead
to valuable functionality. However, the launch was bumpy because people were initially
upset that the new release had a dependency on a new programming language. They
still have to do iterations to improve the build tool and error messages, and to offer
pre-built versions of the library for more platforms to help people who need to update
their own tool chains. But after the initial two weeks of frustration, things went much
more smoothly. They incorporated Rust into a second library, moving the vast majority of
their users to a new programming language, and did not have the same types of

11

complaints. This showed the maintainers that the ecosystem is now ready for new
Python libraries that incorporate Rust.

2. Moving code from C to Rust (or any other language pair) is fundamentally hard because
a machine does not understand the code the way a skilled programmer does. Relying on
a skilled programmer to migrate code to a memory-safe language is too costly. Relying
entirely on machine translation does not produce the desired result with current
technology. Specifically, the output of a tool such as C2Rust can be compiled by the
Rust compiler but it is not written the way a human writes Rust code. That means that
the code is not sufficiently readable and does not make use of the language features that
make Rust preferable to C with regard to security, maintainability, and productivity. There
are ongoing efforts to shrink the gap between the output produced by a machine and a
human while preserving the benefits of automation, but it appears likely that a hybrid
model where the machine and programmer work together is the most practical model.

There is some funding for moving code from C to Rust, but other problems remain.
Creating C2Rust, an open source translator that moves code from C to Rust, led to
some code migration challenges. It also led to the question of who maintains the code
after it is removed, since some maintainers can’t promise to be around as long as people
in the open source community might use the work product, which is an obstacle to
adoption. Some code may need to be maintained by organizations that don’t know Rust
and have little time to maintain C.

3. The Linux kernel now includes initial support for Rust. This will enable writing kernel
modules such as drivers in a memory-safe language, which is important because drivers
in the Linux kernel represent the majority of the code and run at a privileged level.
Getting there required supporting the open source project with a few full- or part-time
engineers in order to give the project the necessary initial momentum. Some companies
released public statements of support too, which proved very useful. Communication
with the Rust community and teams was also important to get some needed features
into the toolchain and language. The next milestone for Rust in the kernel is getting the
first drivers upstreamed, which several major companies are looking forward to.

4. Two years ago, Mozilla began the process of migrating third-party libraries bundled with
the Firefox browser to WebAssembly. This effort complements their efforts to rewrite
parts of Firefox in Rust by making it possible to retrofit coarse-grain memory safety for
existing memory-unsafe C code, using WebAssembly as an intermediate compilation
step. In roughly two years, the team ported five libraries to WebAssembly. Getting there
required developing a new framework called RLBox that makes it possible to
incrementally and securely change Firefox to use the WebAssembly libraries without
imposing noticeable overheads.

Over the last year alone the benefits of WebAssembly became even clearer: the Expat
XML parsing library had over fourteen CVEs disclosed since Firefox shipped a
WebAssembly-safe version of it, and these CVEs did not impact the security of Firefox
nor the huge engineering burden of managing and applying emergency patches to

12

https://github.com/immunant/c2rust
http://c2rust.com

hundreds of millions of users. The next milestone for this project is to improve the
performance and usability of WebAssembly toolchains and RLBox framework itself, and
work with other companies and teams to deploy WebAssembly.

Josh Aas, Georgia Bullen, Amira Dhalla, Alex Gaynor, Joseph Lorenzo Hall, Per Larsen,
Miguel Ojeda, Christine Runnegar, Deian Stefan, and Zack Weinberg contributed to this
report.

13

Resources, Articles, and Research
Related to Memory Safety

General

“Buying Down Risk: Memory Safety” (Atlantic Council)

“Demystifying Magic: High-Level Low-Level Programming” (PDF) (Eliot Moss)

“Fantastic Memory Issues and How to Fix Them” (Educated Guesswork)

“Introduction to Memory Unsafety for VPs of Engineering” (Alex Gaynor)

“The ISRG Wants to Make the Linux Kernel Memory-Safe With Rust” (Ars Technica)

“Linus Torvalds: Rust Will Go Into Linux 6.1” (ZDNet)

“Memory Safe Languages in Android 13” (Google Online Security Blog)

“Memory Safety for the Internet's Most Critical Infrastructure” (Prossimo)

“MSWasm: Soundly Enforcing Memory-Safe Execution of Unsafe Code” (Arxiv)

“Practical Third-Party Library Sandboxing With RLBox” (RLBox)

“Previewing Rust on Azure Sphere” (Microsoft Community Hub)

“Prioritizing Memory Safety Migrations” (Chris Palmer)

“Rust in the Linux Kernel: Just the Beginning” (Prossimo)

“Safety Features” (Cyber ITL). Metrics including memory hardening techniques.

“Taxonomy Of In-The-Wild Exploitation” (Chris Palmer)

“Towards the Next Generation of XNU Memory Safety: kalloc_type” (Apple Security Research
blog)

“An Update on Memory Safety in Chrome” (Google Security blog)

“WebAssembly and Back Again: Fine-Grained Sandboxing in Firefox 95” (Mozilla Hacks)

14

https://www.atlanticcouncil.org/content-series/buying-down-risk/memory-safety/
https://www.academia.edu/60995592/High_Level_Low_Level_Programming
https://educatedguesswork.org/posts/memory-safety/
https://alexgaynor.net/2019/aug/12/introduction-to-memory-unsafety-for-vps-of-engineering/
https://arstechnica.com/gadgets/2021/06/lets-encrypt-parent-org-sponsors-rust-for-linux-kernel-development/
https://www.zdnet.com/article/linus-torvalds-rust-will-go-into-linux-6-1/
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
http://memorysafety.org
https://arxiv.org/abs/2208.13583
https://rlbox.dev/
https://techcommunity.microsoft.com/t5/internet-of-things-blog/previewing-rust-on-azure-sphere/ba-p/3494988
https://noncombatant.org/2021/04/09/prioritizing-memory-safety-migrations/
https://www.memorysafety.org/blog/rust-in-linux-just-the-beginning/
https://cyber-itl.org/about/methodology/#safety-features
https://noncombatant.org/2022/04/22/itw-taxonomy/
https://security.apple.com/blog/towards-the-next-generation-of-xnu-memory-safety/
https://security.googleblog.com/2021/09/an-update-on-memory-safety-in-chrome.html
https://hacks.mozilla.org/2021/12/webassembly-and-back-again-fine-grained-sandboxing-in-firefox-95/

Reports/Convenings

“National Security Agency | Cybersecurity Information Sheet: Software Memory Safety” (PDF,
National Security Agency, November 2022)

“NSA Releases Guidance on How to Protect Against Software Memory Safety Issues” (National
Security Agency, November 2022)

“Position Paper: Progressive Memory Safety for WebAssembly” (2019)

“Recommendations From the Workshop on Open-Source Software Security Initiative”
(September 2022)

“Retrofitting Fine Grain Isolation in the Firefox Renderer” (Usenix, 2020) - Presentation

The Road to Less Trusted Code: Lowering the Barrier to In-Process Sandboxing (Usenix,
Winter 2020)

U.S. Open-Source Software Security Initiative Workshop (August 2022)

Related Reading

“ Crashworthy Code” (Bryan H. Choi)

“ REPORT: Strict Product Liability and the Internet of Things” (Center for Democracy and
Technology)

15

https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/3215760/nsa-releases-guidance-on-how-to-protect-against-software-memory-safety-issues/
https://cseweb.ucsd.edu/~dstefan/pubs/disselkoen:2019:ms-wasm.pdf
https://cpb-us-w2.wpmucdn.com/sites.gatech.edu/dist/a/2878/files/2022/10/OSSI-Final-Report.pdf
https://cseweb.ucsd.edu/~dstefan/pubs/narayan:2020:rlbox.pdf
https://www.usenix.org/conference/usenixsecurity20/presentation/narayan
https://www.usenix.org/publications/login/winter2020/garfinkel-tal
https://sites.gatech.edu/ossi/
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3230829
https://cdt.org/insights/report-strict-product-liability-and-the-internet-of-things/

